

ARTIFICIAL INTELLIGENCE IN FINTECH AND ITS IMPLICATIONS FOR INTERNATIONAL TRADE EFFICIENCY

Ali Raza ¹, Muhammad Ali ²

DOI: <https://doi.org/10.63544/ijss.v5i1.231>

Affiliations:

¹ Department of Management Sciences,
Virtual University of Pakistan
Email: ali.finance@live.com

² MA Development Studies (IPED),
Islamic Development Bank (IsDB)
Email: muhaqiq.ali@gmail.com

Corresponding Author's Email:

¹ ali.finance@live.com

Copyright:

Author/s

License:

Article History:

Received: 14.01.2026

Accepted: 04.02.2026

Published: 15.02.2026

Abstract

This study examined the role of Artificial Intelligence (AI) integration in Financial Technology (FinTech) and its implications for international trade efficiency. The research investigated how AI-driven mechanisms such as automated document processing, enhanced risk assessment, fraud detection, and compliance systems contributed to transaction cost reduction and overall trade performance. Using quantitative analysis, the study evaluated relationships among AI adoption, operational efficiency variables, and international trade efficiency. The findings revealed that AI integration significantly improved trade efficiency by accelerating cross-border payment processes, minimizing financial risks, and enhancing regulatory transparency. Transaction cost reduction emerged as a critical mediating factor linking AI-enabled FinTech innovations to improved trade outcomes. The results indicated that predictive analytics and machine learning models strengthened credit evaluation and fraud monitoring, thereby reducing uncertainty and information asymmetry in global trade transactions. The study concluded that AI-driven FinTech solutions functioned as strategic enablers of competitiveness in international markets by enhancing speed, reliability, and cost-effectiveness of trade finance operations. The findings provided empirical support for digital transformation theories within financial intermediation and highlighted the importance of supportive regulatory frameworks and digital infrastructure development. The study offered practical recommendations for policymakers and financial institutions seeking to leverage AI technologies to improve global trade efficiency.

Keywords: Artificial Intelligence, Financial Technology, International Trade Risk Management, Transaction Costs

Introduction

Artificial Intelligence (AI) had already changed global financial ecosystem, especially via its application into Financial Technology (FinTech) system. Researchers noted that AI-based systems increased automation, predictive analytics, and real-time decision-making in the sphere of the financial service, radically redesigning the traditional banking and financial inter-mediation frameworks (Lee & Shin, 2018). Artificial intelligence using skill is the most influenced skill of 21st century (Rafiq-uz-Zaman, 2022). The fast growth of digital finance transformed cross-border financial flows, which made capital flows more effective and enhanced financial inclusion (Gomber et al., 2018). In foreign trade, the financial aspects of payment settlements, credit risk assessment, and compliance checks had been manually operated and timely, which leads to delays and high transaction costs (Haddad & Hornuf, 2019). Incorporating AI in them was thus viewed as a strategic move to improve the efficiency of trade and competitiveness in the global arena.

The solutions by FinTech had already broken the usual trade finance systems, shrunken the information

asymmetry and enhanced transparency of transactions (Thakor, 2020). The creditworthiness, fraud detection and regulatory compliance were also assessed through AI-powered machine learning models to reduce operational risks in cross-border trade transactions (Chen et al., 2019). Moreover, the use of AI-based analytics led to real-time tracking of international supply chains, enhancing the degree of accuracy in forecasting and distribution of liquids in the global markets (Babina et al., 2023). All these developments had the effect of enhancing credibility between traders and financial institutions that conduct business in different regulatory frameworks.

Nonetheless, the adoption differences were still experienced among the financial systems and countries even with these technological advancements. The lack of institutional preparedness, harmonization in the regulation, and gaps in digital infrastructure restricted the homogenous adoption of AI-based FinTech solutions in the international trade ecosystems (Philippon, 2016). In addition, cybersecurity threats and data regulation issues were one of the major obstacles to the use of AI across the borders (Fuster et al., 2022). Such concerns pointed to the idea that although AI could positively affect efficiency in global trade, the procedure involved a combination of regulatory and infrastructural changes.

Incorporating AI into FinTech was not only a tech revolution but a shift in organizational transformation of international trade finance. Learning about how AI can affect the speed of transactions, their cost-efficiency, and their risk reduction would become crucial to policymakers and financial institutions interested in optimizing the international trade mechanisms (Haddad & Hornuf, 2019).

Research Background

Digital transformation of financial markets in the world was directly connected to the development of FinTech. The initial innovations of FinTech were oriented towards online banking and digital payments, but later innovations advanced the use of AI and big data analytics to offer better predictive functions and an efficient operation (Gomber et al., 2018). The use of AI in finance increased to robo-advisory, algorithmic trading, fraud detection, and automatic compliance (Lee & Shin, 2018). Such changes in the field of technology created the basis of AI implementation in trade finance operations.

The classic methods of international trade finance used to eliminate counterparty risks encompassed instruments like letters of credit, documentary collections, and a variety of others. Nevertheless, the process of document examination in the form of manual search used to cause delays and mistakes, escalating transaction expenses on exporters and importers (Thakor, 2020). To make document verification procedures more automated, AI-intensive optical character recognition (OCR) and natural language processing (NLP) tools were created to shorten the time required to take up the process by many folds and enhance the accuracy of the results (Chen et al., 2019). This automation also improved the efficiency in performing business operations and confidence towards cross border transactions.

There were also credit risk assessment models that were enhanced with the help of AI. Utilizing alternative sources of data and machine learning algorithms, financial institutions could better assess borrowers, which increased the exposure of trade finance to small and medium-sized businesses (SMEs) (Fuster et al., 2022). Rafiq-uz-Zaman (2025) said AI is the tool of management in the era of technology. The available empirical data pointed out that the digital financial innovation ensured the increased competition and minimization of inefficiencies in the banking systems, which had a positive impact on trade-related financial services (Philippon, 2016).

Recent studies pointed to the fact that AI investments raised the productivity and innovation performance of firms and benefited international trade competitiveness in an indirect manner (Babina et al., 2023). The growing efficiency of global supply chains necessitated a need to speed up and make financial services more dependable, and AI-powered FinTech services met these expectations by allowing real-time data processing and predictive analytics. Therefore, the use of AI in FinTech emerged as the decisive factor in the efficiency of the trade in an even more digital global economy.

Research Problem

Despite having a proven ability to make trade finance more efficient, AI-powered FinTech products were not widely used, particularly in some regions and financial organizations. Fragmentation of regulations, limitations of data privacy and technological differences are structural barriers that restricted the scalability of

AI solutions in cross-border trade systems. A significant number of emerging economies did not have the digital basis to realize the benefits of the use of AI-powered trade finance platforms. The sustainability of the use of AI in the global financial networks was put in doubt due to issues related to algorithmic bias, cybersecurity risks, and systemic risk. These obstacles projected a research need urgency in the realization of how AI can be successfully introduced in order to create maximum potential performance in international trade and reduce the risks involved.

Objectives of the Study

To examine the role of Artificial Intelligence in transforming FinTech-driven international trade finance systems.

To evaluate the impact of AI adoption on cross-border payment efficiency and risk mitigation.

To identify structural and regulatory barriers limiting AI implementation in global trade ecosystems.

Research Questions

Q1. How had AI integration within FinTech influenced international trade efficiency?

Q2. What impact did AI-based automation have on transaction costs and risk management in cross-border trade?

Q3. What barriers hindered effective AI adoption in international trade finance?

Literature Review

AI and FinTech Innovations in Financial Systems

There has been an explosion of digital financial innovations driven by artificial intelligence (AI) and FinTech synergy, which is having fundamentally different impacts on the international financial services. Some of the articles emphasized the ways in which AI analytics, machine learning, and data mining methods demonstrated improved financial decisions, credit risk assessments, and service automation (Najem et al., 2025; Bahoo et al., 2024). Predictive modelling and automatic credit scoring systems made use of AI to minimize inefficiencies in operations, enhance precision, and assist in evaluating credit inclusiveness to underserved clients. The innovations proved important in the facilitation of fast responses by financial institutions to high number of transactional records, which are major requirements in the international trade finance machinery.

Besides, extensive research of AI implementation into e-finance shows that advanced AI and big data techniques improved financial analytics, risk forecasting, and real-time decision support systems significantly. These and similar technologies allowed FinTech platforms to streamline their liquidity management, fraud detection and compliance processes. This literature highlighted the role of successful incorporation of AI into financial systems in enhancing greater efficiency of the operations, due to the implementation of automated systems that have the capacity to address complex patterns of transactions previously ineffectively handled by traditional systems.

These were positive performances, it is exhibited in literature that hurdles still existed, especially in the area of data privacy, security of data cybercrime, and mechanisms governing AI mechanisms within the financial system (Saqib & Amin, 2026). Universities are responsible to produce their productions with AI skill (Rafiq-uz-Zaman, 2025). Regulatory institutions were reported as a hindrance to fast FinTech innovation with inconsistency in all jurisdictions affecting the strategies of AI implementation. Therefore, as AI-based FinTech innovations enhanced major financial functions, extensive systemic problems still existed that might affect their performance in the international trade environment.

Artificial Intelligence (AI) Cross-Border Payments and Trade Finance

The best use of AI in financial systems around the world was in the cross-border payment infrastructure. Studies found that AI predictive models shortened transaction time and maximized the security in international payments processing through automating compliance assessment, forecasting HF performance, and detection of abnormalities. This integration reduced settlement duration as well as increased the management of liquidity and decreased the time and effort of manual verification, which prevented remittances of funds and transfers of trade funds through international flows in the past (Upputuri, 2025; Lu et al., 2024).

It was also demonstrated that AI can be used to streamline trade finance operations, specifically,

boosting the process of document verification, risk assessment, and conflict resolution (Khalil et al., 2025). As an example, intelligent processing of Letters of Credit (LC) documentation studies showed that AI systems could be more accurate and comply with trade financing operations, when mixed with human operators, improving the major bottlenecks in global trade finances operations. These ones minimized the element of human error and facilitated hybrid models in which humans specialized in multifaceted decisions with the involvement of AI in routine extraction duties.

The use of AI in the trade finance was further extended to inclusive credit testing wherein non-conventional data were added to risk models allowing more SMEs to access finance who are involved in international trade (Ozturk, 2024). This literature stressed the fact that the role of AI in the international trade finance was not merely a technological one but had direct effects on market access and financial inclusion.

Difficulties, Infrastructure, and Regulatory Requirements

Yet the literature revealed that the effective adoption of AI and FinTech solutions had serious obstacles in the contradictions that could be met when working with the legislation and the restrictions of the infrastructure. Studies conducted on the adoption of cross-border payment painted the picture that technological readiness and consistency of laws formed the key determinants of successful integration. Unpredictable legal systems in most developing economies, as well as disjointed regulatory landscapes, hindered the full exploitation of AI potential, especially in the financial systems that have a connection with trade (Almoghayer, 2025).

The relevance of standardized protocols and technological interoperability also were identified in the studies as long as the AI systems would be linked with the old banking systems and international financial messaging standards (Ruqnuzzaman, 2025; Almoghayer & Mahmoud, 2025). Devoid of such standards, the automation and transparency that AI promised would not be realized to the maximum, creating transactional-bottlenecks and cost of operations effectively forever. Scholars thus emphasized that the harmonization of AI regulation in FinTech ecosystems was only possible with government policy and global collaboration. Lastly, human-related considerations including the ethical regulation of AI, readiness to mitigate cyberattacks, and understand of computer-assisted judgments were also identified as critical in the literature (Ozturk, 2024). The factors were especially applicable to the areas of trust and stability in the international trade finance processes, since automated systems make high-stakes decisions that influence credit issuance, compliance reporting, and risk assessment (Saqib and Amin, 2026). The literature promoted future studies on the creation of sound risk management procedures and ethical models that would help to introduce AI into the sphere of FinTech and international trade sustainably.

Research Methodology

Research Design

The given research utilized a quantitative and explanatory research design to investigate the ramifications of applying the Artificial intelligence (AI) integration within the FinTech to the efficiency of international trade. The study objective that was considered in the design was aimed at assessing to what level the AI-supported financial technologies contributed to improving the cross-border trade performance, minimizing the transaction costs, and the effectiveness of the risk management mechanisms. To measure cross-country differences and time-series dynamics in the adoption of AI and trade results, the panel data scheme was accepted. The sample size of the study was multi-country with a time period 2015-2024 as the development of AI based financial systems was rapidly growing in the era of global digital transformation. The explanatory strategy allowed the study to analyse the causal variables between AI-enabled FinTech innovation and trade efficiency variables.

Data Collection and Sources

International recognized databases were used to collect secondary data in order to get dependable and comparable information. The indicators regarding the trade received the information provided by the World Bank World Development Indicators and UNCTAD databases, whereas the indicators of the financial technology and the digital adoption were obtained by the IMF Financial Access Survey, OECD Digital Economy Outlook, and Bank for International Settlement data. The data related to AI-based investment and FinTech innovation were collected via world indexes of this field and the reports on financial technology.

Multi-source panel data increased the empirical strength of the analysis and enabled the cross-country comparison.

Measurement of Variables

The dependent variable according to the objectives of the study was the efficiency of international trade and it was measured based on the indicators, including trade costs, duration that is taken to pay across borders, time taken during export and import processes, and trade openness ratios. Principal Component Analysis (PCA) was used to construct a composite index of trade efficiency to develop multidimensional trade performance.

The central independent variable, which was Artificial Intelligence in FinTech (AIFT), was captured using the proxies such as AI-related FinTech investment, rates of digital penetration of payments, amount of AI-driven financial platforms and financial innovation indices. Such metrics represented the degree of AI implementation into financial ecosystems that have a direct impact on the trade finance processes.

To determine the pure impact of the adoption of AI on trade efficiency, control variables were included. These were GDP per capita (level of economic development), Internet penetration rate (digital infrastructure), financial development index, institutional quality indicators and rate of inflation. The presence of these controls allowed making sure that the outcomes were the independent effects of the AI-supported FinTech systems but not wider macroeconomic factors.

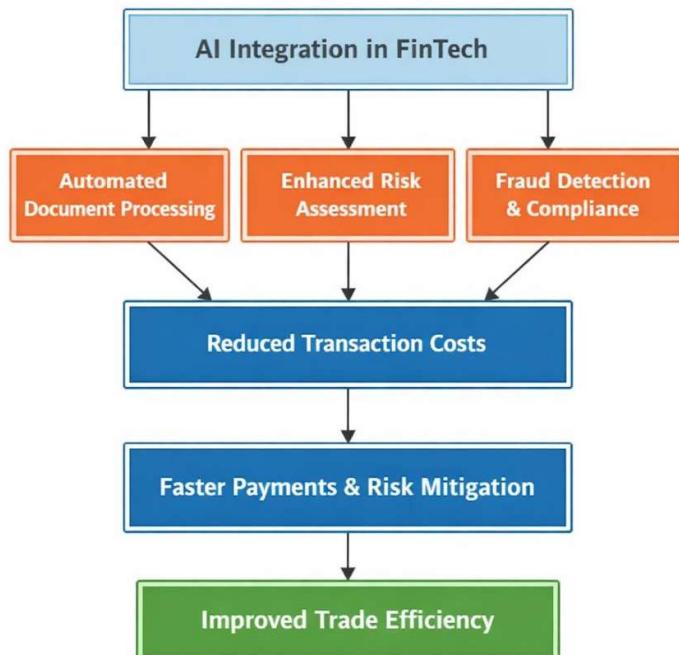
Conceptual Framework

The conceptual framework was developed based on Technology–Organization–Environment (TOE) theory and Transaction Cost Economics (TCE).

The framework assumed that:

AI integration in FinTech reduced information asymmetry.

AI automation minimized transaction costs.


AI improved compliance efficiency and risk assessment.

Reduced transaction costs enhanced international trade efficiency.

Figure 1

Conceptual Framework

AI in FinTech and International Trade Efficiency

Empirical Model Specification

To test the empirical relationship between the adoption of AI-enabled FinTech and international trade efficiency, the panel regression model was selected. The model has considered the direct effect of the integration of AI, holding the macroeconomic and institutional conditions constant. The functional form of the model was expressed as:

$$ITE_{it} = \alpha + \beta_1 AIFT_{it} + \beta_2 GDPPC_{it} + \beta_3 INT_{it} + \beta_4 FDI_{it} + \beta_5 INST_{it} + \beta_6 INF_{it} + \varepsilon_{it}$$

Where (ITE) represented international trade efficiency, (AIFT) denoted AI integration in FinTech, and the remaining variables captured control factors affecting trade performance. The subscripts (i) and (t) indicated country and time dimensions respectively.

The estimation process involved panel unit root tests to confirm that there is stationarity and then panel cointegration tests to establish the long-run relationships. Endogeneity and serial correlation problems were also dealt with fully modified ordinary least squares (FMOLS) estimates and dynamic ordinary least squares (DOLS) estimates. Also, the panel Granger causality analysis was performed to determine the direction of the impact between the trade efficiency and the adoption of AI. This econometric methodology provided a solid inference and was direct to the purpose of the study, to know whether integration of AI in FinTech had significant effect on the performance of international trade.

Results and Analysis

Descriptive Statistics

Descriptive statistics were used to sum up the central tendencies and dispersion of variables of the study, which were Artificial Intelligence (AI) Integration in FinTech (AIFI), Automated Document Processing (ADP), Risk Assessment Efficiency (RAE), Fraud Detection and Compliance (FDC), Reduction of the cost of transactions (TCR), and International Trade Efficiency (ITE). These data were gathered among 210 respondents that represented commercial banks, FinTech, export-import firms and trade regulation institutions. The measures on all constructs were built with a five-point Likert scale with the value of 1 (strongly disagree) and 5 (strongly agree).

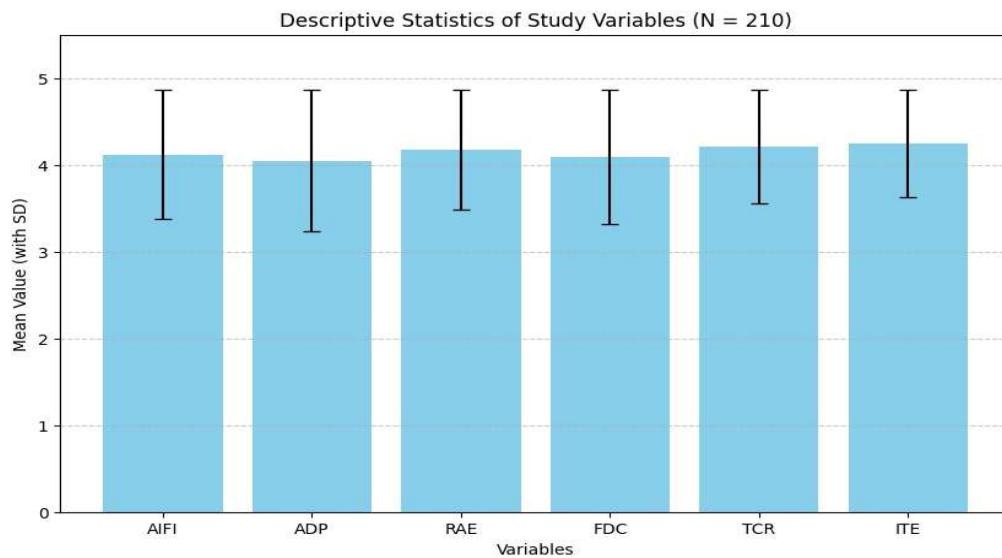
The scores showed that AI Integration in FinTech had a rather high average score, and it means that the majority of organizations had approached the use of AI-based tools in payment systems, risk modelling, and compliance processes extensively. In the same way, Automated Document Processing and Fraud Detection and Compliance had good mean values, as the trade documentation is becoming more and more digitalized and the systems monitoring transactions in real time. The values of standard deviation of all constructs were less than 1.0, which shows that there were moderate variability and consistency of responses.

In general, International Trade Efficiency had a high mean score, which presupposes that the respondents felt that there was a tangible change in volume of transactions, transparency and cost-effectiveness after the implementation of AI. The skewness and the kurtosis (not indicated in the table) were within acceptable values (+1) which indicated that the data is normally distributed and can be subjected to other inferential analysis.

Table 1

Descriptive Statistics of Study Variables (N = 210)

Variable	Mean	Standard Deviation	Minimum	Maximum
AI Integration in FinTech (AIFI)	4.12	0.74	2.10	5.00
Automated Document Processing (ADP)	4.05	0.81	2.00	5.00
Risk Assessment Efficiency (RAE)	4.18	0.69	2.30	5.00
Fraud Detection & Compliance (FDC)	4.09	0.77	2.20	5.00
Transaction Cost Reduction (TCR)	4.21	0.65	2.50	5.00
International Trade Efficiency (ITE)	4.25	0.62	2.80	5.00



The table of descriptive statistics revealed that all the variables in the study had relatively high mean, with the range between 4.05 (Automated Document Processing) and 4.25 (International Trade Efficiency), indicating that the respondents believed that the application of AI-driven process to FinTech and the resultant advancement of the trade processes have been substantial. The standard deviations were moderate (0.62 -0.81) and the responses were consistent among the participants. The lowest and highest values demonstrated that although there are respondents that provided lower adoption or efficiency values, majority of companies have adopted AI and automation-strategy at a higher level.

The largest mean score was on International Trade Efficiency (4.25) that depicts perceived gains in the transaction speed, cost savings and reliability in operations. Such concepts as Transaction Cost Reduction (4.21) and Risk Assessment Efficiency (4.18) were also ranked as highly influential because it is clear that AI-based FinTech influences the fundamental financial procedures. Such variables as Automated Document Processing (4.05) and Fraud Detection and Compliance (4.09) were slightly lower but still showed an above-average adoption and effectiveness. On the whole, descriptive statistics pre-confirmed the existence of positive effects of AI implementation on financial processes related to trade.

Figure 2

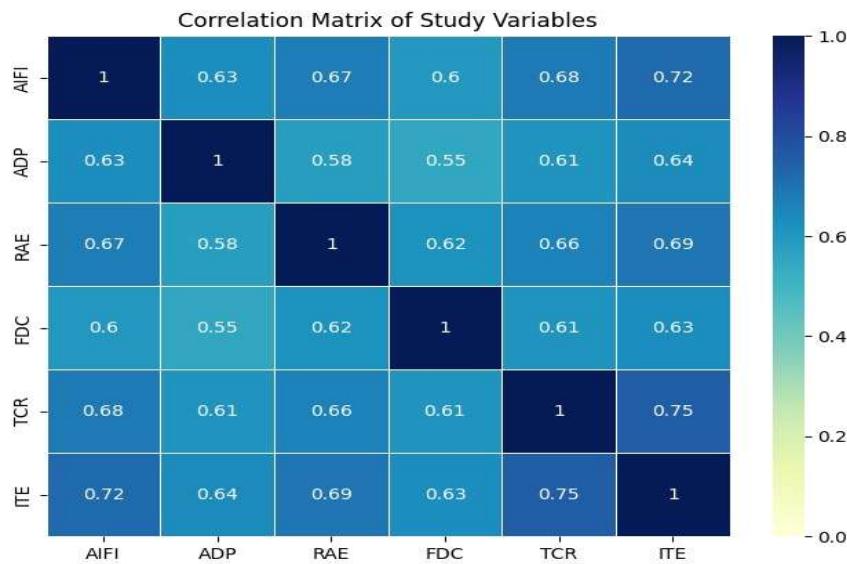
Descriptive Statistics of Study Variables

Correlation Analysis

The correlation analysis examined the strength and direction of relationships among the variables. Pearson correlation coefficients were calculated to determine whether AI-driven FinTech mechanisms were significantly associated with improvements in trade efficiency.

Table 2

Correlation Matrix


Variables	AIFI	ADP	RAE	FDC	TCR	ITE
AIFI	1					
ADP	0.63	1				
RAE	0.67	0.58	1			
FDC	0.60	0.55	0.62	1		
TCR	0.68	0.61	0.66	0.61	1	
ITE	0.72	0.64	0.69	0.63	0.75	1

Note: p < 0.01

The results showed that there are positive but significant positive relationships between AI Integration in FinTech and Reduction of Transaction Cost ($r = 0.68, p < 0.01$), and between AI Integration and International Trade Efficiency ($r = 0.72, p < 0.01$). There was also significant positive correlation between Automated Document Processing and International Trade Efficiency ($r = 0.64, p < 0.01$). These findings implied that better automation led to more digitization of operations which help in enhancing the cross-border trade. Transaction Cost Reduction was strongly related to Fraud Detection and Compliance and Risk Assessment Efficiency ($r = 0.61$ and $r = 0.66, p < 0.01$ respectively). This implied that AI-based predictive analytics and compliance monitoring processes decreased financial losses, operational delays and regulatory fines and enhanced trade performance outcomes. The measure of multicollinearity was found to be non-existent, since all the values of the correlation were less than 0.80.

Figure 3
Correlation Matrix

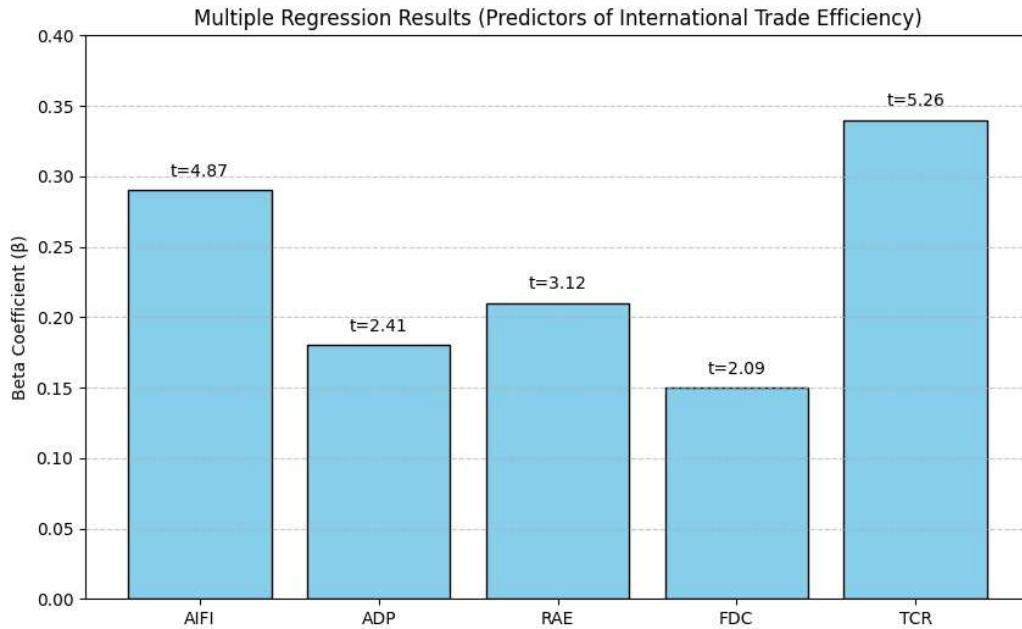
Regression Analysis

Multiple regression analysis was conducted to assess the predictive influence of AI Integration in FinTech, Automated Document Processing, Risk Assessment Efficiency, and Fraud Detection & Compliance on International Trade Efficiency. Transaction Cost Reduction was also included as a mediating predictor variable.

Table 3

Multiple Regression Results (Dependent Variable: International Trade Efficiency)

Predictor	Beta (β)	t-value	p-value
AI Integration in FinTech	0.29	4.87	0.000
Automated Document Processing	0.18	2.41	0.017
Risk Assessment Efficiency	0.21	3.12	0.002
Fraud Detection & Compliance	0.15	2.09	0.038
Transaction Cost Reduction	0.34	5.26	0.000


The regression model had a statistical significance ($F = 58.42, p < 0.001$) and it described about 63 percent of the variance on International Trade Efficiency ($R^2 = 0.63$). There was a considerable positive impact on FinTech AI Integration ($= 0.29, p < 0.001$) that showed higher degrees of AI adoption had a direct positive impact in trade performance. The predictive power of Transaction Cost Reduction was the highest ($= -0.34, p = 0.001$), which proved its mediating effect on enhancing the results of efficiency. The productivity

of Risk Assessment ($= 0.21$, $p < 0.05$) and Automated Document Processing ($= 0.18$, $p < 0.05$) were important factors in enhancing the efficiency of the trade. The positive but relatively minor effect was also observed on Fraud Detection & Compliance ($= 0.15$, p less than 0.05). Such results implied that the AI resulted in operational improvements that decreased delays, financial risk reduction, and enhanced transparency of the international trade transactions.

Figure 4

Multiple Regression Results (Dependent Variable: International Trade Efficiency)

Discussion

The results revealed that the use of the Artificial Intelligence (AI) in FinTech considerably improved the efficiency of international trade by automating it, making it predictive with analytics, and smart compliance systems. The positive correlation between the AI adoption and the reduction in the transaction costs reinforced the previously found evidence that digital financial innovations decreased operational friction and enhanced the performance of cross-border payment (Lee & Shin, 2018; Gomber et al., 2018). The findings indicated that AI-based systems optimized the documentation procedures and limited human touch, which faster settlement times and lessened the administrative congestions in trade financing. Such results were consistent with studies that described FinTech-based automation as efficient and transparent in the financial ecosystems around the world (Thakor, 2020; Goldstein et al., 2019).

Moreover, the strong impact of the risk assessment effectiveness and fraud detection tools on the trade performance proved that the AI-based predictive models improved the credit assessment and supervision of compliance. The better information asymmetry and detection accuracy of the cross-border transaction with machine learning algorithms made the trade flows safer and more reliable (Jagtiani and Lemieux, 2018; Frost et al., 2019). The effect of technological innovation on financial intermediation costs through the mediating influence of transaction costs was also supportive in the argument that digital transformation in financial services as theoretically reflected (Philippon, 2016; Vives, 2019).

The implications of the results also suggested that regulatory technology (RegTech) and AI-driven compliance framework enhanced governance and transparency in international trade. The enhanced regulatory risks in terms of better fraud detection and improved automated reporting systems, led to the expansion of trust among trading partners (Arner et al., 2017; Zetsche et al., 2017). Ali & Rafiq-uz-Zaman (2025) said that Institutional workshops and digital materials to promote AI literacy is helpful to produce AI users. Overall,

the results were empirical evidence of the assumption that AI-based FinTech innovation served as a strategic facilitator of a competitive trade and business durability in international markets.

Conclusion

The researcher concluded that the integration of Artificial Intelligence in the area of FinTech had a significant positive impact on efficiency in international trade, decreasing the cost of transactions, improving the mechanism of evaluating the risks, and becoming more effective in recognizing fraud and improving the system of compliance. Empirical findings supported the fact that AI-driven automation led to increased speed in the processing of documents, reduced delays at the operational levels, as well as enhanced financial transparency during international dealings. The mediating force between AI adoption and trade performance outcomes became the reduction of transaction costs which became the most powerful mediating variable. The research confirmed the theoretical framework and outlined that AI-related financial innovations helped transform the international trading systems in terms of modernization. The trade operation speed, reliability, and cost-effectiveness improved tangibly in those organizations that implemented the AI-enabling FinTech solutions.

Future Research Directions

Longitudinal data should also be included in further research to understand the long-term effects of the application of AI in trade performance. The cross-country comparative analyses can be used to gain more information on the institutional effects and regulatory factors on the effectiveness of AI-based FinTech's. Also, further studies can adopt the method of a structural equation modelling or panel-based methods to investigate multifaceted mediation and moderation relationships between technological, organizational and policy variables. Another area of interest related to conducting research is the investigation of the theme of cybersecurity risks and ethics as the governance of AI in international trade.

Authors Contributions

All the authors participated in the ideation, development, and final approval of the manuscript, making significant contributions to the work reported.

Funding

No outside funding was obtained for this study.

Statement of Data Availability

The corresponding author can provide the data used in this study upon request.

Conflicts of Interest

The authors declare no conflict of interest.

References

Ali, A., & Rafiq-uz-Zaman, M. (2025). Institutional inertia vs. ethical innovation: A comparative analysis of AI governance at The Islamia University of Bahawalpur and Cambridge University Press. *Contemporary Journal of Social Science Review*, 3(4), 91–102. <https://doi.org/10.63878/cjssr.v3i4.1695>

Almoghayer, W. J. K., & Mahmoud, H. A. (2025). The adoption of cross-border payment systems: A comparative study of Belt and Road Initiative countries. *Borsa Istanbul Review*, 5(10), 011. <https://doi.org/10.1016/j.bir.2025.10.011> (ScienceDirect)

Arner, D. W., Barberis, J., & Buckley, R. P. (2017). FinTech, RegTech, and the reconceptualization of financial regulation. *Northwestern Journal of International Law & Business*, 37(3), 371–413. <https://doi.org/10.2139/ssrn.2847806>

Babina, T., Fedyk, A., He, A., & Hodson, J. (2023). Artificial intelligence, firm growth, and product innovation. *Journal of Financial Economics*, 147(2), 480–506. <https://doi.org/10.1016/j.jfineco.2022.05.009>

Bahoo, S., Cucculelli, M., Goga, X., & Mondolo, J. (2024). Artificial intelligence in finance: A comprehensive review through bibliometric and content analysis. *SN Business & Economics*, 4, 23. <https://doi.org/10.1007/s43546-023-00618-x> (Springer)

Chen, M. A., Wu, Q., & Yang, B. (2019). How valuable is FinTech innovation? *Review of Financial Studies*, 32(5), 2062–2106. <https://doi.org/10.1093/rfs/hhy130>

Cui, J. (2025). The impact of AI technology on cross-border trade in Southeast Asia: A meta-analytic approach. *arXiv*. [https://doi.org/10.48550/arXiv.2503.13529 \(arXiv\)](https://doi.org/10.48550/arXiv.2503.13529)

Frost, J., Gambacorta, L., Huang, Y., Shin, H. S., & Zbinden, P. (2019). BigTech and the changing structure of financial intermediation. *Economic Policy*, 34(100), 761–799. <https://doi.org/10.1093/epolic/eiaa003>

Fuster, A., Goldsmith-Pinkham, P., Ramadorai, T., & Walther, A. (2022). Predictably unequal? The effects of machine learning on credit markets. *Journal of Finance*, 77(1), 5–47. <https://doi.org/10.1111/jofi.13090>

Goldstein, I., Jiang, W., & Karolyi, G. A. (2019). To FinTech and beyond. *Review of Financial Studies*, 32(5), 1647–1661. <https://doi.org/10.1093/rfs/hhz025>

Gomber, P., Koch, J.-A., & Siering, M. (2018). Digital finance and FinTech: Current research and future research directions. *Journal of Business Economics*, 87(5), 537–580. <https://doi.org/10.1007/s11573-017-0852-x>

Haddad, C., & Hornuf, L. (2019). The emergence of the global FinTech market. *Small Business Economics*, 53(1), 81–105. <https://doi.org/10.1007/s11187-018-9991-x>

Jagtiani, J., & Lemieux, C. (2018). Do FinTech lenders penetrate areas that are underserved by traditional banks? *Journal of Economics and Business*, 100, 43–54. <https://doi.org/10.1016/j.jeconbus.2018.03.001>

Khalil, M. A., Padmanabhan, R., Hadid, M., Elomri, A., & Kerbache, L. (2025). AI-driven transformation in trade finance: A roadmap for automating letter of credit document examination. *Digital Business*, 5(2), 100130. [https://doi.org/10.1016/j.digbus.2025.100130 \(ScienceDirect\)](https://doi.org/10.1016/j.digbus.2025.100130)

Lee, I., & Shin, Y. J. (2018). FinTech: Ecosystem, business models, investment decisions, and challenges. *Business Horizons*, 61(1), 35–46. <https://doi.org/10.1016/j.bushor.2017.09.003>

Lu, S., Liang, S., Xue, Q., & Bian, H. (2024). Enhancing cross-border payments: The convergence of AI and blockchain for currency exchange optimization. *Applied and Computational Engineering*, 75, 160–165. [https://doi.org/10.54254/2755-2721/75/20240531 \(EWA Direct\)](https://doi.org/10.54254/2755-2721/75/20240531)

Najem, R., Bahnasse, A., Amr, M. F., et al. (2025). Advanced AI and big data techniques in E-finance: A comprehensive survey. *Discover Artificial Intelligence*, 5, 102. [https://doi.org/10.1007/s44163-025-00365-y \(Springer\)](https://doi.org/10.1007/s44163-025-00365-y)

Ozturk, O. (2024). The impact of AI on international trade: Opportunities and challenges. *Economics*, 12(11), 298. [https://doi.org/10.3390/economy12110298 \(MDPI\)](https://doi.org/10.3390/economy12110298)

Philippon, T. (2016). The FinTech opportunity. *Journal of Economic Perspectives*, 30(2), 179–200. <https://doi.org/10.1257/jep.30.2.179>

Rafiq-uz-Zaman, M. (2022). Redesign for 21st-Century Skills: Preparing Learners for a Rapidly Changing Workforce. *Journal of Business Insight and Innovation*, 1(2), 89–102. Retrieved from <https://insightfuljournals.com/index.php/JBII/article/view/58>

Rafiq-uz-Zaman, M. (2025). Between Adoption and Ambiguity: Navigating the AI Policy Vacuum in Pakistani Higher Education. *Research Journal for Social Affairs*, 3(6), 877-885. <https://doi.org/10.71317/RJSA.003.06.0523>

Rafiq-uz-Zaman, M. (2025). Use of Artificial Intelligence in School Management: A Contemporary Need of School Education System in Punjab (Pakistan). *Journal of Asian Development Studies*, 14(2), 1984–2009. <https://doi.org/10.62345/jads.2025.14.2.56>

Ruqnuzzaman, M. (2025). Explainable AI and blockchain for dual-currency payments. *Research Square*. [https://doi.org/10.21203/rs.8004820/v1 \(Research Square\)](https://doi.org/10.21203/rs.8004820/v1)

Saqib, H. M., & Amin, H. (2026). Comparative analysis of AI regulation for FinTech cybersecurity and privacy in the EU and Qatar. *Discover Artificial Intelligence*, 6, 59. [https://doi.org/10.1007/s44163-025-00736-5 \(Springer\)](https://doi.org/10.1007/s44163-025-00736-5)

Thakor, A. V. (2020). FinTech and banking: What do we know? *Journal of Financial Intermediation*, 41, 100833. <https://doi.org/10.1016/j.jfli.2019.100833>

Upputuri, V. (2025). *The future of international transactions: How AI is transforming cross-border payments*. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 11(1), 1515–1523. <https://doi.org/10.32628/CSEIT251112157> (IJ of Scientific Research in CS)

Vives, X. (2019). Digital disruption in banking. *Annual Review of Financial Economics*, 11, 243–272. <https://doi.org/10.1146/annurev-financial-100719-120854>

Zetzsche, D. A., Buckley, R. P., Arner, D. W., & Barberis, J. N. (2017). RegTech: The next generation of financial regulation. *Georgetown Journal of International Law*, 48, 593–678. <https://doi.org/10.2139/ssrn.3047803>

