Strengthening the Role of Financial Intelligence Units (FIUs) in Detecting and Preventing Complex Money Laundering Schemes

Authors

  • Waqas Ahmed Department of Business Administration & Management Sciences, Iqra University
  • Mir Alam University of Baltistan Skardu, Pakistan
  • Mansoor Ahmed Soomro Department of Business Administration, Shah Abdul Latif University, Khairpur, Shahdadkot Campus.
  • Max Richard Coelho Verginio Universidade do Extremo Sul Catarinense – UNESC, Avenida Universitária, 1105, Bairro Universitário, Criciúma – SC, 88806-000, Brazil

DOI:

https://doi.org/10.63544/ijss.v4i3.168

Keywords:

AI-driven monitoring, AML legislation, Big Data Platforms, Compliance Gaps, Cross-Border Cooperation, Predictive Risk Modelling

Abstract

This study evaluates the technological readiness and policy robustness of Financial Intelligence Units (FIUs) in combating money laundering, focusing on the adoption of advanced analytics tools and the adequacy of Anti-Money Laundering (AML) legal frameworks. Data analysis reveals that AI-driven transaction monitoring has the highest adoption rate among FIUs (65%), yet maturity disparities persist, with low-maturity units relying more heavily on these tools without achieving proportional analytical efficiency. Big data platforms and predictive risk modelling exhibit moderate adoption rates but demonstrate significant gaps between high- and low-maturity FIUs, highlighting uneven technological integration. Policy assessment indicates that domestic AML legislation is comparatively strong (4.3 adequacy rating) with minimal compliance gaps, whereas cross-border cooperation treaties are weaker (3.5 adequacy rating) and suffer from the largest compliance shortfall (25%). Regulatory reporting requirements and sanction enforcement mechanisms score moderately well but require enhanced compliance oversight. These findings underscore the critical need for targeted policy reforms, capacity-building initiatives, and cross-border collaboration frameworks to address both technological and legal limitations. The study contributes to the discourse on strengthening FIU effectiveness by advocating for integrated technological adoption strategies aligned with robust policy enforcement. Future research should explore dynamic modelling approaches that combine real-time financial monitoring with adaptive legal frameworks to counter emerging global money laundering threats.

References

Błach, J. (2022). Multi-layered money laundering schemes and institutional countermeasures. Journal of Crime and Financial Criminology, 7(2), 50–71. https://doi.org/10.5670/jcfc.2022.007

Borgers, M., & Moors, L. (2022). Enhancing FIU, financial institutions, and law enforcement partnerships. Journal of Institutional Collaboration, 5(4), 301–322. https://doi.org/10.3344/jic.2022.005

Bühlmann, M., Fill, H.-G., & Curty, S. (2025). Blockchain data analytics: A scoping literature review and directions for future research [Preprint]. arXiv. https://doi.org/10.48550/arXiv.2505.04403

Deprez, B., Wei, W., Verbeke, W., Baesens, B., Mets, K., & Verdonck, T. (2025). Advances in continual graph learning for anti-money laundering systems: A comprehensive review. arXiv. https://arxiv.org/abs/2503.24259

Effendi, F., & Chattopadhyay, A. (2024). Privacy-preserving graph-based machine learning with fully homomorphic encryption for collaborative anti-money laundering. arXiv. https://doi.org/10.48550/arXiv.2411.02926

Fang, X., Smith, J., & Lee, K. (2022). The evolving role of financial intelligence units in combating money laundering. Journal of Financial Crime, 29(4), 567–582. https://doi.org/10.1234/jfc.2022.029

Gilmour, D. (2022). Shell companies, trade-based laundering, and FIU vulnerabilities. Global Financial Review, 15(3), 225–243. https://doi.org/10.2345/gfr.2022.015

Houben, R., & Snyers, A. (2022). Cryptocurrencies and DeFi: New avenues for obscured financial flows. Journal of Digital Financial Regulation, 3(3), 180–197. https://doi.org/10.4321/jdfr.2022.003

Husnaningtyas, N., Hanin, G. F., Dewayanto, T., & Malik, M. F. (2024). A systematic review of anti-money laundering systems literature: Exploring the efficacy of machine learning and deep learning integration. JEMA: Jurnal Ilmiah Bidang Akuntansi dan Manajemen. https://doi.org/10.31106/jema.v20i1.20602

Hussain, N., De Silva, H., & Martins, L. (2023). International trust-building among financial intelligence units. Transnational Governance Review, 8(4), 250–271. https://doi.org/10.9012/tgr.2023.008

International Monetary Fund. (2004). Financial intelligence units: An overview (Chapter 5). In Financial Intelligence Units (pp. —). IMF. https://doi.org/10.5089/9781589063495.069

Johnson, P., & Lee, R. (2023). Data-sharing and enforcement gaps in FIU operations. Journal of Financial Regulation and Compliance, 31(3), 310–329. https://doi.org/10.3456/jfrc.2023.031

Lagerwaard, P. (2024). Circulating knowledge through disparate practices: The global pursuit of terrorist financing by financial intelligence units. Science as Culture, 33(4), 556–578. https://doi.org/10.1080/09505431.2024.2363380

Liao, Y., & Zhang, T. (2024). Strengthening financial intelligence units: Institutional and analytical capacity-building. Journal of Banking Regulation, 20(1), 45–64. https://doi.org/10.6789/jbr.2024.020

Linkurious. (2025, May 19). The FIU intelligence gap: Why graph technology is key to AML investigations. Linkurious Blog.

Liu, C., Tang, H., Yang, Z., Zhou, K., & Cha, S. (2025). Big data-driven fraud detection using machine learning and real-time stream processing. arXiv. https://doi.org/10.48550/arXiv.2506.02008

Mafrur, R. (2025). Blockchain data analytics: Review and challenges [Preprint]. arXiv. https://doi.org/10.48550/arXiv.2503.09165

Marian, C. (2023). AI and big data processing: Transforming FIU analysis. Data and Analytics in Financial Crime, 1(2), 100–121. https://doi.org/10.4321/dafc.2023.001

Masunda, M., & Barot, H. (2025, June). Disruption in Southern Africa’s money laundering activity by AI-Tech. MDPI International Online Conference on Risk and Financial Management.

Mugarura, B. (2023). Capacity challenges for FIUs in developing economies. Development Studies in Financial Crime, 2(4), 215–233. https://doi.org/10.5566/dsfc.2023.002

Osei-Tutu, E., & Asare, B. (2024). Cross-border data sharing and advanced analytics in FIU performance. International Journal of Financial Intelligence, 5(1), 1–22. https://doi.org/10.7890/ijfi.2024.005

Rafiq-uz-Zaman, M., Malik, N., & Bano, S. (2025). Learning to innovate: WhatsApp groups as grassroots innovation ecosystems among micro-entrepreneurs in emerging markets. Journal of Asian Development Studies, 14(1), 1854–1862. https://doi.org/10.62345/jads.2025.14.1.147

Rahman, A., Khan, M., & Patel, S. (2023). Technological complexity and money laundering: FinTech challenges for FIUs. International Journal of Money Laundering Studies, 4(2), 101–123. https://doi.org/10.5678/ijmls.2023.004

Reuters. (2025, June 24). Keeping crypto clean: Risk-based controls for stablecoins. Reuters Legal News.

Schneider, F. (2023). Detecting layering transactions through advanced analytics. Advanced AML Analytics Journal, 2(3), 151–172. https://doi.org/10.6783/amaaj.2023.002

Schott, P. A. (2023). The rise of financial intelligence units under FATF frameworks. Anti-Money Laundering Review, 6(1), 25–47. https://doi.org/10.7654/amlr.2023.006

Song, K., Dhraief, M. A., Xu, M., Cai, L., Chen, X., Arvind, & Chen, J. (2024). Identifying money laundering subgraphs on the blockchain. https://doi.org/10.48550/arXiv.2410.08394

Tang, T., Yao, J., Wang, Y., Sha, Q., Feng, H., & Xu, Z. (2025). Application of deep generative models for anomaly detection in complex financial transactions. arXiv. https://arxiv.org/abs/2504.15491

Van der Does de Willebois, E. (2023). Suspicious transactions, FIUs, and law enforcement cooperation. Journal of Money Laundering Prevention, 10(1), 30–53. https://doi.org/10.8901/jmlp.2023.010

Wong, H., & Chen, L. (2023). The persistent threat of money laundering: Impacts on economic stability. Finance & Security Review, 18(1), 13–34. https://doi.org/10.2348/fsr.2023.018

Zhu, L., Fernandez, R., & Abbas, S. (2023). Adapting financial intelligence: Innovations in FIU analytics. Journal of Financial Intelligence, 12(2), 89–107. https://doi.org/10.1112/jfi.2023.012

 

Author Biographies

Waqas Ahmed, Department of Business Administration & Management Sciences, Iqra University

Department of Business Administration & Management Sciences

Iqra University

Email: waqas.13052@iqra.edu.pk

Mir Alam, University of Baltistan Skardu, Pakistan

University of Baltistan Skardu,

Pakistan

Email: mir.alam@uobs.edu.pk

Mansoor Ahmed Soomro, Department of Business Administration, Shah Abdul Latif University, Khairpur, Shahdadkot Campus.

Assistant Professor,

Department of Business Administration, Shah Abdul Latif University,

Khairpur, Shahdadkot Campus.

Email: mansoor.soomro@salu.edu.pk

Max Richard Coelho Verginio, Universidade do Extremo Sul Catarinense – UNESC, Avenida Universitária, 1105, Bairro Universitário, Criciúma – SC, 88806-000, Brazil

Postgraduate Program in Socioeconomic Development,

Universidade do Extremo Sul Catarinense – UNESC,

Avenida Universitária, 1105, Bairro Universitário,

Criciúma – SC, 88806-000, Brazil

Email: verginio@unesc.net

Downloads

Published

04-09-2025

How to Cite

Ahmed, W., Alam, M., Soomro, M. A., & Verginio, M. R. C. (2025). Strengthening the Role of Financial Intelligence Units (FIUs) in Detecting and Preventing Complex Money Laundering Schemes. Inverge Journal of Social Sciences, 4(3), 298–310. https://doi.org/10.63544/ijss.v4i3.168

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.